Integration by Parts using Tabular Approach

Given the integral:

$$ \int x^2 \ln(x) \,dx $$

We’ll use the tabular method to solve it:

  1. Choose Functions:
    • $$ u = \ln(x) $$
    • $$ dv = x^2 \,dx $$
  2. Create a Table:
  3. For the table, we will alternate between differentiating \(u\) and integrating \(dv\). Start by listing \(u\), its successive derivatives, and \(dv\), its successive integrals:

    $$ u $$ $$ dv $$
    $$ \ln(x) $$ $$ x^2 $$
    $$ \frac{1}{x} $$ $$ \frac{x^3}{3} $$
    $$ -\frac{1}{x^2} $$ $$ \frac{x^4}{12} $$
    $$ \frac{2}{x^3} $$ $$ \frac{x^5}{60} $$
  4. Apply Signs and Multiply Diagonally:
  5. Now, apply alternating signs down the table. Multiply the terms diagonally and add them up:

    $$ (+) \cdot (\ln(x) \cdot x^2) + (-) \cdot \left(\frac{1}{x} \cdot \frac{x^3}{3}\right) + (+) \cdot \left(-\frac{1}{x^2} \cdot \frac{x^4}{12}\right) + (-) \cdot \left(\frac{2}{x^3} \cdot \frac{x^5}{60}\right) $$

    Here’s how the multiplication works:

    • First row: $$ (+) \cdot (\ln(x) \cdot x^2) = x^2 \ln(x) $$
    • Second row: $$ (-) \cdot \left(\frac{1}{x} \cdot \frac{x^3}{3}\right) = -\frac{x^2}{3} $$
    • Third row: $$ (+) \cdot \left(-\frac{1}{x^2} \cdot \frac{x^4}{12}\right) = \frac{x^2}{12} $$
    • Fourth row: $$ (-) \cdot \left(\frac{2}{x^3} \cdot \frac{x^5}{60}\right) = -\frac{x^2}{30} $$
  6. Simplify and Add Up Terms:
  7. $$ \int x^2 \ln(x) \,dx = x^2 \ln(x) – \frac{x^2}{3} – \frac{x^2}{12} – \frac{x^2}{30} + C $$

  8. Final Result:
  9. $$ \int x^2 \ln(x) \,dx = x^2 \ln(x) – \frac{13x^2}{60} + C $$

Leave a Reply

Your email address will not be published. Required fields are marked *