Integration by Parts using Tabular Approach
Given the integral:
$$ \int x^2 \ln(x) \,dx $$
We’ll use the tabular method to solve it:
- Choose Functions:
- $$ u = \ln(x) $$
- $$ dv = x^2 \,dx $$
- Create a Table:
- Apply Signs and Multiply Diagonally:
- First row: $$ (+) \cdot (\ln(x) \cdot x^2) = x^2 \ln(x) $$
- Second row: $$ (-) \cdot \left(\frac{1}{x} \cdot \frac{x^3}{3}\right) = -\frac{x^2}{3} $$
- Third row: $$ (+) \cdot \left(-\frac{1}{x^2} \cdot \frac{x^4}{12}\right) = \frac{x^2}{12} $$
- Fourth row: $$ (-) \cdot \left(\frac{2}{x^3} \cdot \frac{x^5}{60}\right) = -\frac{x^2}{30} $$
- Simplify and Add Up Terms:
- Final Result:
For the table, we will alternate between differentiating \(u\) and integrating \(dv\). Start by listing \(u\), its successive derivatives, and \(dv\), its successive integrals:
$$ u $$ | $$ dv $$ |
---|---|
$$ \ln(x) $$ | $$ x^2 $$ |
$$ \frac{1}{x} $$ | $$ \frac{x^3}{3} $$ |
$$ -\frac{1}{x^2} $$ | $$ \frac{x^4}{12} $$ |
$$ \frac{2}{x^3} $$ | $$ \frac{x^5}{60} $$ |
Now, apply alternating signs down the table. Multiply the terms diagonally and add them up:
$$ (+) \cdot (\ln(x) \cdot x^2) + (-) \cdot \left(\frac{1}{x} \cdot \frac{x^3}{3}\right) + (+) \cdot \left(-\frac{1}{x^2} \cdot \frac{x^4}{12}\right) + (-) \cdot \left(\frac{2}{x^3} \cdot \frac{x^5}{60}\right) $$
Here’s how the multiplication works:
$$ \int x^2 \ln(x) \,dx = x^2 \ln(x) – \frac{x^2}{3} – \frac{x^2}{12} – \frac{x^2}{30} + C $$
$$ \int x^2 \ln(x) \,dx = x^2 \ln(x) – \frac{13x^2}{60} + C $$